
248 S H O R T  C O M M U N I C A T I O N S  

Acta Cryst. (1979). A35, 248 

A b s o r p t i o n  co r r ec t i ons  for  n e u t r o n  d i f f rac t ion .  By A. W. HEWAT, Institute Laue-Langevin, BP 156X, Centre de 

Tri, 38042 Grenoble, France 

(Received 19 June 1978; accepted 6 September 1978) 

Abstract 

The transmission factors tabulated by Rouse, Cooper, York 
& Chakera [Acta Cryst. (1970), A26, 682-691] for/tr < 1 
can be expressed as the product of two factors: a scale factor 
and a Debye-Waller factor. In the case of a sphere or a 
cylinder, the absorption corrections then reduce to simple 
adjustments of these parameters at the end of the refine- 
ment, instead of tedious corrections to the data itself. The 
results are of particular use for powder data. A printing error 
in the original paper is also corrected. 

Absorption corrections are usually made by reference to a 
tabulation of the transmission factor Ahu, or by the use of 
computer programs to correct the raw data. For example, 
Rouse, Cooper, York & Chakera (1970) have produced a 
table particularly suited to neutron diffraction, where usually 
/~r < 1 . Of course the use of such tables is tedious, and when 
computer programs are available it is not always clear what 
the effect will be of errors in the measurement of the 
absorption coefficient/t, the crystal radius r, or even the dif- 
ferent approximations used to calculate A ~kt" 

Rouse et al. also give an analytical approximation for 
Ahk t, where the error does not exceed 0.0035 for/,tr < 1 
(1 > Ahk I > 0.1965): 

Ahk t : exp [ - ( a  I + b I sin 20)lur - (a 2 + b 2 sin 2 0)(/zr)2l, 

where the coefficients are: 

Cylinder Sphere 

a I 1.7133 1.5108 

b I -0 .0368 -0 .0315 

a 2 -0 .0927  -0.0951 

b 2 -0-3750 -0.2898.  
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(Note that there is a printing error for b 2 in the original 
paper.) Clearly this expression can be rewritten as 

Ahk t = k exp I - A B  (sin 0/2)2], 
k = exp [-al/,tr + a2(~tr)2], 

AB = 221bl/dr + b2(/~r)2], 

where k is a scale factor and AB is an overall Debye-Waller 
factor. 

Then, unless absolute measurements are being made, the 
absorption correction for spherical or cylindrical samples 
can be performed at the end of the refinement simply by 
adding AB cos y* to all the B, j, where y* is the angle between 
the reciprocal-lattice axes i and j .  

The result is of particular use for neutron powder dif- 
fraction where the product /tr can be obtained simply by 
measuring the transmission through a fine slit placed in front 
of the sample. For example, a value of /tr = 0-579 was 
obtained for a 16 mm diameter sample of CsPbCI 3, giving 
AB = 0.27. Even for a weakly absorbing sample ofdeutero- 
naphthalene, we found/zr = 0.274 and hence AB = 0.07. In 
most cases, absorption corrections are not made for neutron 
powder diffraction, and this results in significant under- 
estimations of the Debye-Waller factors, even for apparently 
weakly absorbing materials. Given the ease with which the 
above formulae can be applied, there is now no excuse for 
not making these corrections. 

The concurrence of M. J. Cooper with these comments on 
his original paper is acknowledged. 
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Abstract 

Standard deviations in bond lengths and bond angles are 
related to standard deviations in atomic coordinates accord- 
ing to published equations [Cruickshank (1959). Inter- 
national Tables for  X-ray Crystallography. Vol. II, pp. 331- 
332]. These equations were derived for an idealized model in 

0567-7394/79/010248-03501.00 

which the distribution of coordinate errors is isotropic. Tests 
show that typical structures exhibit only moderate deviations 
from this model, and so the calculated standard deviations 
are accurate. Furthermore, the standard deviation in a bond 
angle ~0 (in degrees) can be well approximated by the 
expression a(~o) ~. 81 [a(R)/R] .... s., where the quantity in 
square brackets is the root-mean-square value of a(R)/R for 
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the two bonds forming the angle. Tests on typical published 
results show that this equation usually estimates a(~0) to 
within the round-off error in the reported value. 

Numerical estimates of the standard deviations of bond 
lengths and angles are usually provided by conventional 
computer programs from variances and covariances of 
atomic coordinates. Nevertheless, it remains of interest to 
find analytic relations among these measures of error in 
order to provide a check of the calculations, to estimate 
quantities that have not been calculated, or to predict the 
accuracy needed in atomic coordinates to obtain a desired 
accuracy in bond lengths or angles. In fact this problem has 
been solved (Cruickshank, 1959) but the wide range of 
applicability and the usefulness of the results appear to have 
been generally overlooked. This communication indicates the 
nature of the derivation, points out a useful approximation 
suitable for 'back-of-an-envelope' calculations, and reports 
tests of the results. 

The simple relations among the various errors are derived 
from an idealized model in which the standard deviation of 
the position of a given atom is the same in any direction and 
the errors in the coordinates of different atoms are 
uncorrelated. It is not necessary to assume that the standard 
deviations in coordinates are the same for different atoms. 

A straightforward analysis of the propagation of errors 
leads to Cruickshank's relation for the standard deviation in 
the distance R.p between atom n and atom p: 

¢T2~1/2 a(R, w)= (az. + v v, , (1) 

where o, is the standard deviation in any coordinate 
(Cartesian, not fractional) of atom n, and similarly for atom 
p. This result is essentially obvious: it arises from the fact 
that the variance in the interatomic distance is merely the 
sum of the variances of the positions of the end atoms along 
their line of centers, provided the errors are uncorrelated. 

A straightforward but tedious analysis of the propagation 
of errors leads to Cruickshank's result for the standard 
deviation in the angle ~0 determined by three atoms m, n, and 
p: 

[ 2  2 + 2..t.. 2 2a~cos~ol,/2 
5~__ + 5" °" °" O(qg) (2) 

L REin RnmRnl' ] R~p - - - -  - ' 

where the terms have been rearranged to indicate their 
magnitudes and significance. The third term can usually be 

neglected, either because ~o is near 90 ° or because the center 
atom n is a heavy atom with small a,,. The first two terms are 
just double the mean squared relative standard deviation in 
the two bonds forming the angle: 

\ g 2 /  i - ; T  + . (3) LR.m R i p ]  

Then equation (2) simplifies to the approximate form 

a(~0) = 2 u2 (o(R)2/R2) 1/2 

= 2 m [a(R)/R]r.m.s. (4a) 

(with the use of an obvious abbreviation) or, expressed in 
degrees, 

a(~o) = 81 [a(R)/R]r.m.s.. (4b) 

It is interesting to note that it is not the relative standard 
deviation a(~0)/~0, but rather the absolute standard deviation 
a(~0) that is proportional to the relative standard deviation of 
a bond length. 

The assumption of isotropic errors and the estimates 
provided by equations (1), (2), and (4b) were tested against a 
sample of reported results. Five papers from different 
countries were selected from one issue of Acta Crystallo- 
graphica. It is not always apparent what computer programs 
were used for the calculation of distances, angles, and their 
errors; however, all probably made use of the complete 
variance-covariance matrix for the atomic coordinates. In 
each ease four or five atoms were chosen, and the bond 
lengths and angles involving them were examined. The 
comparisons are summarized in Table 1. 

For each atom the standard deviation in a coordinate was 
taken as the r.m.s, value of the standard deviations along the 
three crystallographic axes: 

o, = [(O'x 2 + aye + O~/31 rE, (5) 

where a x is the product of the standard deviation in the 
fractional coordinate and the axial length, and so on. For one 
atom the deviation from the assumption of isotropic error is 
measured by 

[ (ax - ° ' ) 2  + "" ] (6) 

The arithmetic mean of these quantities, for the atoms con- 
sidered, is reported in Table 1 as the 'mean deviation from 

Table 1. Tests o f  approximations 

(1)* (2) (3) (4) (5) 

Mean deviation from isotropic error (%) 21 16 6 15 5 
Maximum deviation (%) 33 25 15 33 12 
Worst case, a(R) from equation (1) (A) 0.0038 0.060 0.014 0.0052 0.0043 

o(R) reported (/~,) 0.003 0-05 0.02 0.005 0-005 
Worst case, a(O) from equation (4b) (o) 0.15 0-61 1.41 0-36 0.33 

o((0) from equation (2) (o) 0.16 0.69 1.49 0-40 0-38 
a((0) reported (o) 0-1 0.8 1.5 0.3 0.4 

* References: (1) Calvo, Gillespie, Vekris & Ng (1978); (2) Fitzgerald & Jensen (1978); (3) Hughes, Mortimer & Truter (1978); (4) 
Kojid-Prodi6 & Rogi6 (1978); (5) Wijmenga, Numan & Vos (1978). 
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isotropic error'. The 'maximum deviation' is the largest 
value of Itr:~ - anl/an, or the analogous fraction for the 
y or z coordinate, of any atom. 

Estimates of a(R) from equation (1) were typically within 
the round-off error; the poorest agreement noted between 
calculated and reported values is given in Table 1. The same 
can be said for the estimates of tr(~0), from equation (4b); the 
poorest agreement found is included in the table. The 
corresponding value of a(tp) calculated from equation (2) is 
also given for these cases; it is not markedly superior to the 
approximate value from equation (4b). 

The assumption of isotropic uncorrelated errors appears to 
be satisfactory for typical crystal structure determinations, 
and the error estimates provided by equations (1) and (4b) 
are surprisingly good. 
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Abstract 

The measurements of nuclear neutron diffraction intensities 
for a single crystal of UO 2 by Faber & Lander [Phys. Rev. B 
(1976), 14, 1151-1164] have been re-analysed using both 
the Cooper-Rouse and Becker-Coppens extinction formal- 
isms. The results indicate that this crystal is type I in nature, 
not type II as was suggested by Faber & Lander, and this 
conclusion is essentially the same as that obtained for a 
different single crystal of UO 2 used in our earlier study of the 
wavelength dependence of extinction in this material [Sakata, 
Cooper, Rouse & Willis (1978). Acta Cryst. A34, 336-3411. 
The analysis of the Faber & Lander data gave a value for the 
scattering-length ratio bu/b o = 1.448 (2). 

Introduction 

In a recent study of the magnetic structure of UO 2 Faber & 
Lander (1976) carried out a series of accurate neutron 
diffraction measurements on a single crystal of UO 2 at three 
different temperatures, viz 300, 80 and 4.2 K. In analysing 
their data they assumed the model for extinction given by 
Zachariasen (1967) and found this adequate to describe the 
extinction results for the purpose of their study. However, 
they concluded that the high value they obtained for the 
mosaic-spread parameter g, i.e. about 1000, suggested a type 
II extinction, as defined by Zachariasen (1967). 

Recently we have carried out an independent neutron 
diffraction study of the wavelength dependence of extinction 
in UO 2 (Sakata, Cooper, Rouse & Willis, 1978), analysing 
our results on the basis of the improvements to the 
Zachariasen extinction model derived by Cooper & Rouse 
(1970) and Becker & Coppens (1974). This study led to the 

* On leave from Nagoya University, Nagoya, Japan. 
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conclusion that these formalisms gave similar results for the 
crystal studied and indicated a type I extinction in this case. 
Since almost every recent study of extinction has indicated 
type I extinction or a tendency to type I extinction we have 
therefore carried out an analysis of the Faber & Lander data 
to determine whether the extinction type in their crystal was 
any different from that in the one we studied. 

Results of the new analysis 

Detailed experimental results for the nuclear scattering in the 
Faber & Lander (1976) experiment were kindly supplied by 
these authors and were re-analysed using the Harwell TAILS 
computer program (see Sakata, Cooper, Rouse & Willis, 
1978). In order to determine the most suitable model for the 
extinction in this crystal the data were analysed using the 
following models: 

(1) Cooper-Rouse 
(2) Becker-Coppens 
(3) Becker-Coppens 
(4) Becker-Coppens 
(5) Becker-Coppens 
(6) Becker-Coppens 
(7) Becker-Coppens 

type I Gaussian (secondary) 
type I Lorentzian (secondary) 
type II (secondary) 
mixed-type Gaussian (secondary) 
mixed-type Lorentzian (secondary) 
general (mixed-type Lorentzian plus 

primary). 

The Cooper-Rouse model gave reasonable agreement, 
with values of the effective domain radius which do not differ 
significantly for the three temperatures. The Becker- 
Coppens type II model gave a fit which is significantly worse 
than that for the type I models, particularly for the most 
severely extinguished reflections. Of the type I models, that 
using a Lorentzian mosaic-spread function gave slightly 
better overall agreement than that using a Gaussian mosaic- 
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